初二平行四边形题两道,非常的急!
1.E、F分别是平行四边形ABCD的边AD、BC上的点,且,AE=CF
⑴求证:△ABE≌△CDF
⑵若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论
2.在平行四边形ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.
⑴求证:四边形AFCE是平行四边形.
⑵若去掉已知条件中的∠DAB=60°,则上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.
初二平行四边形题两道,非常的急!
答案:1 悬赏:60 手机版
解决时间 2021-08-21 09:25
- 提问者网友:龅牙恐龙妹
- 2021-08-21 01:08
最佳答案
- 五星知识达人网友:撞了怀
- 2021-08-21 02:24
1.1)由于AE=CF,AB=CD,角A=角C
由边角边得三角形ABE全等于三角形CDF
2)由于三角形ABE全等于三角形CDF
BE=DF则ME=NF
角CFD=角AEB
又AD平行于BC,
则角CFD=角ADF
则角AEB=角ADF
则ME平行于NF
MFNE的一组对边平行且相等
则MFNE为平行四边形
2.1)AE=AD=BC=CF
且AE平行于CF
AFCE有一组对边平行且相等
则AFCE为平行四边形
2)由于以上证明未用到角DAB=60度的条件
所以去掉该条件结论仍成立
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯