求1/根号下(1+x^4)的不定积分,有根号的!!
答案:2 悬赏:0 手机版
解决时间 2021-01-22 16:22
- 提问者网友:放下
- 2021-01-22 00:57
求1/根号下(1+x^4)的不定积分,有根号的!!
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-01-22 02:30
原函数不能表示为初等函数
1/√(1+x^4)
=(1+x^4)^(-1/2)
=1-(1/2)x^4+(-1/2)(-1/2-1)/2!·x^8+…+(-1/2)(-1/2-1)…(-1/2-n+1)/n!·x^(4n)+…
=1-1/2·x^4+1·3/(2^2·2!)·x^8+…+(-1)^n·1·3…(2n-1)/(2^n·n!)·x^(4n)+…
=1+∑(n:1→∞)(-1)^n·(2n-1)!!/(2n)!!·x^(4n),x∈(-1,1)
∫1/√(1+x^4)·dx
=x+∑(n:1→∞)(-1)^n·(2n-1)!!/[(4n+1)·(2n)!!]·x^(4n+1)+C
=∑(n:0→∞)(-1)^n·(2n-1)!!/[(4n+1)·(2n)!!]·x^(4n+1)+C,x∈(-1,1)
!!表示双阶乘。设n为自然数
(2n+1)!!=(2n+1)(2n-1)…5·3·1
(2n)!!=(2n)(2n-2)…6·4·2
为便于计算,规定(-1)!!=0!!=1!!=1追问请问一下这个1-(1/2)x^4+(-1/2)(-1/2-1)/2!·x^8+…+(-1/2)(-1/2-1)…(-1/2-n+1)/n!·x^(4n)+…是怎么得到的额?谢谢了!追答二项式展开成x的幂级数:
(1+x)^α=1+αx+α(α-1)/2!·x^2+…+α(α-1)…(α-n+1)/n!·x^n+…,x∈(-1,1)
α取不同的值,可以得到不同的二项式展开式
1/√(1+x^4)
=(1+x^4)^(-1/2)
=1-(1/2)x^4+(-1/2)(-1/2-1)/2!·x^8+…+(-1/2)(-1/2-1)…(-1/2-n+1)/n!·x^(4n)+…
=1-1/2·x^4+1·3/(2^2·2!)·x^8+…+(-1)^n·1·3…(2n-1)/(2^n·n!)·x^(4n)+…
=1+∑(n:1→∞)(-1)^n·(2n-1)!!/(2n)!!·x^(4n),x∈(-1,1)
∫1/√(1+x^4)·dx
=x+∑(n:1→∞)(-1)^n·(2n-1)!!/[(4n+1)·(2n)!!]·x^(4n+1)+C
=∑(n:0→∞)(-1)^n·(2n-1)!!/[(4n+1)·(2n)!!]·x^(4n+1)+C,x∈(-1,1)
!!表示双阶乘。设n为自然数
(2n+1)!!=(2n+1)(2n-1)…5·3·1
(2n)!!=(2n)(2n-2)…6·4·2
为便于计算,规定(-1)!!=0!!=1!!=1追问请问一下这个1-(1/2)x^4+(-1/2)(-1/2-1)/2!·x^8+…+(-1/2)(-1/2-1)…(-1/2-n+1)/n!·x^(4n)+…是怎么得到的额?谢谢了!追答二项式展开成x的幂级数:
(1+x)^α=1+αx+α(α-1)/2!·x^2+…+α(α-1)…(α-n+1)/n!·x^n+…,x∈(-1,1)
α取不同的值,可以得到不同的二项式展开式
全部回答
- 1楼网友:往事隔山水
- 2021-01-22 02:48
arcsinx平方+c追问这个是加号,不是减号.追答喔。知道了,刚看错了,三角换元。把x平方看作tant,问题迎刃而解。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯