某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶
答案:2 悬赏:70 手机版
解决时间 2021-12-28 20:16
- 提问者网友:我一贱你就笑
- 2021-12-28 00:00
最佳答案
- 五星知识达人网友:第幾種人
- 2021-12-28 00:23
解:(1)y=(x-50)?w=(x-50)?(-2x+240)=-2x2+340x-12000,
∴y与x的关系式为:y=-2x2+340x-12000.
(2)y=-2x2+340x-12000=-2(x-85)2+2450
∴当x=85时,y的值最大.
(3)当y=2250时,可得方程-2(x-85)2+2450=2250
解这个方程,得x1=75,x2=95
根据题意,x2=95不合题意应舍去
∴当销售单价为75元时,可获得销售利润2250元. 解析分析:(1)因为y=(x-50)w,w=-2x+240
故y与x的关系式为y=-2x2+340x-12000.
(2)用配方法化简函数式求出y的最大值即可.
(3)令y=2250时,求出x的解即可.点评:本题考查的是二次函数的实际应用.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.
∴y与x的关系式为:y=-2x2+340x-12000.
(2)y=-2x2+340x-12000=-2(x-85)2+2450
∴当x=85时,y的值最大.
(3)当y=2250时,可得方程-2(x-85)2+2450=2250
解这个方程,得x1=75,x2=95
根据题意,x2=95不合题意应舍去
∴当销售单价为75元时,可获得销售利润2250元. 解析分析:(1)因为y=(x-50)w,w=-2x+240
故y与x的关系式为y=-2x2+340x-12000.
(2)用配方法化简函数式求出y的最大值即可.
(3)令y=2250时,求出x的解即可.点评:本题考查的是二次函数的实际应用.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.
全部回答
- 1楼网友:轮獄道
- 2021-12-28 01:39
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯