高数问题:设曲线y=f(x)在原点与曲线y=sinx相切,求lim(n趋向于无穷大)(根号(n)*根号(f(2/π)))
请给出详细过程 谢谢!
高数问题:设曲线y=f(x)在原点与曲线y=sinx相切,求lim(n趋向于无穷大)(根号(n)*根号(f(2/π)))
答案:1 悬赏:10 手机版
解决时间 2021-08-20 18:59
- 提问者网友:动次大次蹦擦擦
- 2021-08-20 02:20
最佳答案
- 五星知识达人网友:动情书生
- 2021-08-20 03:30
你题目抄错啦,最后应该是f(2/n)
lim(n->∝)√n*√f(2/n)
=lim(n->∝)√2 *√[f(2/n)/(2/n)]
=√2lim(n->∝)√f(2/n)/(2/n)
n->∝,2/n->0,u=2/n
=√2lim(u->0)√[f(u)/u]
f'(u)|u=0 =lim(u->0)f(u)/u
y=sinx,y'=cosx
f'(x)|x=0=cos0=1,lim(u->0)f(u)/u=1
lim(n->∝)√n*√f(2/n)=√2lim(u->0)√[f(u)/u]=√2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯