永发信息网

如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,AB=AD=AP=1,PB=PD=2,E和F分别是C

答案:1  悬赏:40  手机版
解决时间 2021-07-28 13:14
  • 提问者网友:回忆在搜索
  • 2021-07-28 01:14
如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,AB=AD=AP=1,PB=PD=
最佳答案
  • 五星知识达人网友:轮獄道
  • 2021-07-28 02:35

(Ⅰ)证明:∵AB=AD=AP=1,PB=PD=
2,
∴PA2+AD2=PD2,∴PA2+AD2=PD2
∴∠PAD=90°,∴PA⊥AD,
同理可得:PA⊥AB,AB∩AD=A
∴PA⊥底面ABCD.
(Ⅱ)证明:∵AB∥CD,CD=2AB,E是CD的中点,
∴ABED为平行四边形,
∴BE∥AD,
又∵BE?平面PAD,AD?平面PAD,
∴BE∥平面PAD.
由于EF是△PCD的中位线,∴EF∥DP,
同理得∴EF∥平面PAD,
又EF∩BE=E,
∴平面FBE∥平面PAD.
(Ⅲ)由(Ⅰ)知PA⊥底面ABCD,
由已知AP=1,F是PC的中点,得F到底面ABCD的距离为
1
2PA=
1
2,
由已知AB∥CD,AB⊥AD,CD=2AB,AB=AD=1,
S△BCE=
1
2×1×1=
1
2,
∴三棱锥F-BCE的体积V=
1

1

1
2=
1
12.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯