设a,b,c都是正数,求证1/2a+1/2b+1/2c>=1/(a+b)+1/(b+c)+1/(c+a)
设a,b,c都是正数,求证1/2a+1/2b+1/2c>=1/(a+b)+1/(b+c)+1/(c+a)
答案:1 悬赏:40 手机版
解决时间 2021-04-07 19:23
- 提问者网友:杀生予夺
- 2021-04-07 14:47
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-04-07 16:00
a,b,c都是正数,
∴(a-b)²/4ab(a+b)≥0
[(a+b)²-4ab]/4ab(a+b)≥0
(a+b)/4ab - 1/(a+b)≥0
(a+b)/4ab ≥1/(a+b)
1/4a +1/4b≥1/(a+b)
同理可证:
1/4b +1/4c≥1/(b+c)
1/4a +1/4c≥1/(a+c)
把这3项加起来即证:
1/2a+1/2b+1/2c>=1/(a+b)+1/(b+c)+1/(c+a)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯