永发信息网

设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素

答案:2  悬赏:40  手机版
解决时间 2021-02-17 12:05
  • 提问者网友:做自己de王妃
  • 2021-02-17 08:03
设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素
最佳答案
  • 五星知识达人网友:你可爱的野爹
  • 2021-02-17 08:47
对A做LU分解,用归纳法容易证明L和U具有同样的符号结构(这种矩阵叫M-矩阵),即L和U的对角元为正数、非对角元为负数(非零的部分)、顺序主子式大于零.于是L^{-1}和U^{-1}都是非零元皆为正数的三角矩阵,A^{-1}=U^{-1}L^{-1}是正矩阵.
全部回答
  • 1楼网友:往事隔山水
  • 2021-02-17 10:00
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯