1*3*5+5*7*9+……97*99*101
答案:1 悬赏:0 手机版
解决时间 2021-02-16 03:13
- 提问者网友:最爱你的唇
- 2021-02-15 23:46
1*3*5+5*7*9+……97*99*101
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-02-16 00:34
待求和式=∑(4n+1)(4n+3)(4n+5), n从0到24.
用裂项相消法,
(4n+1)(4n+3)(4n+5) = 1/8 *[(4n+1)(4n+3)(4n+5)(4n+7) - (4n-1)(4n+1)(4n+3)(4n+5)]
所以∑(4n+1)(4n+3)(4n+5), n从0到24
=1/8 * [97*99*101*103 - (-1)*1*3*5]
=1/8 *[999* 10^5 + 24]
=12487503
用裂项相消法,
(4n+1)(4n+3)(4n+5) = 1/8 *[(4n+1)(4n+3)(4n+5)(4n+7) - (4n-1)(4n+1)(4n+3)(4n+5)]
所以∑(4n+1)(4n+3)(4n+5), n从0到24
=1/8 * [97*99*101*103 - (-1)*1*3*5]
=1/8 *[999* 10^5 + 24]
=12487503
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯