已知函数f(x)=x2,对任意实数t,gt(x)=-tx+1.
答案:1 悬赏:0 手机版
解决时间 2021-03-05 10:05
- 提问者网友:太高姿态
- 2021-03-05 01:37
已知函数f(x)=x2,对任意实数t,gt(x)=-tx+1.
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-03-05 02:21
(1),y=gt(x)-f(x)=-3x+1-x^2=-(x+3/2)^2+13/4
所以函数在(-无穷,-3/2)单调递增;在(-3/2,+无穷)单调递减。
(2),h(x)=x/f(x)-gt(x)=1/x-(-tx+1)=1/x+tx-1,在(0,2]单调递减,
而函数y=1/x,在(0,+无穷)单调递减,
所以 函数y=tx-1,在[0,2]单调递减。
则:2t-1<-1,t<0。
故实数t的取值范围为:t<0。
(3),f(x) x^2+2mx-m<0,
m^2+m>(x+m)^2 。
任意实数x∈(0,1/3]恒成立,
当x∈(0,1/3]时,x+m∈(m,m+1/3],
因为m>0,所以(x+m)^2的最大值为:(m+1/3)^2;
m^2+m>(m+1/3)^2,解得:m>1/3,
故 m>1/3;
所以 m的取值范围为:m>1/3。
所以函数在(-无穷,-3/2)单调递增;在(-3/2,+无穷)单调递减。
(2),h(x)=x/f(x)-gt(x)=1/x-(-tx+1)=1/x+tx-1,在(0,2]单调递减,
而函数y=1/x,在(0,+无穷)单调递减,
所以 函数y=tx-1,在[0,2]单调递减。
则:2t-1<-1,t<0。
故实数t的取值范围为:t<0。
(3),f(x)
m^2+m>(x+m)^2 。
任意实数x∈(0,1/3]恒成立,
当x∈(0,1/3]时,x+m∈(m,m+1/3],
因为m>0,所以(x+m)^2的最大值为:(m+1/3)^2;
m^2+m>(m+1/3)^2,解得:m>1/3,
故 m>1/3;
所以 m的取值范围为:m>1/3。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯