数列{an}满足a1=1,an+1=
2n+1an
an+2n (n∈N+)
(1)证明:数列{
2n
an }是等差数列;
(2)求数列{an}的通项公式an;
(3)设bn=(2n-1)(n+1)an,求数列{bn}的前n项和Sn.
数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N+)(1)证明:数列{2nan}是等差数列; &nbs...
答案:2 悬赏:80 手机版
解决时间 2021-02-23 19:49
- 提问者网友:流星是天使的眼泪
- 2021-02-23 12:21
最佳答案
- 五星知识达人网友:洒脱疯子
- 2021-02-23 13:49
(1)取倒数得:
1
an+1 =
1
2n+1 +
1
2an ,两边同乘以2n+1得:
2n+1
an+1 =1+
2n
an ,
所以数列{
2n
an }是以
21
a1 =2为首项,以1为公差的等差数列.
(2)∵{
2n
an }是以
21
a1 =2为首项,以1为公差的等差数列.,
∴
2n
an =
2
1 +(n?1)×1,
即an=
2n
n+1 .
(3)由题意知:bn=(2n?1)?2n则前n项和为:Sn=1×2+3×22+5×23+…+(2n?1)×2n,
2Sn=1×22+3×23+5×24+…(2n-1)×2n+1,
由错位相减得:?Sn=2+2(22+23+…+2n)?(2n?1)×2n+1,
∴Sn=(2n?3)×2n+1+6.
1
an+1 =
1
2n+1 +
1
2an ,两边同乘以2n+1得:
2n+1
an+1 =1+
2n
an ,
所以数列{
2n
an }是以
21
a1 =2为首项,以1为公差的等差数列.
(2)∵{
2n
an }是以
21
a1 =2为首项,以1为公差的等差数列.,
∴
2n
an =
2
1 +(n?1)×1,
即an=
2n
n+1 .
(3)由题意知:bn=(2n?1)?2n则前n项和为:Sn=1×2+3×22+5×23+…+(2n?1)×2n,
2Sn=1×22+3×23+5×24+…(2n-1)×2n+1,
由错位相减得:?Sn=2+2(22+23+…+2n)?(2n?1)×2n+1,
∴Sn=(2n?3)×2n+1+6.
全部回答
- 1楼网友:西风乍起
- 2021-02-23 14:03
(1)由已知有:
an+1
2n+1 =
an
2n +1(n∈n*),
即:bn+1-bn=1(n∈n*)
∴数列{bn}为等差数列,其首项为1,公差为1
(2)由(1)知:bn=1+(n-1)×1=n(n∈n*)
即:
an
2n =n(n∈n*)∴an=n2n(n∈n*)
∴sn=1×21+2×22+3×23+…+n2n
2sn=1×22+2×23+…+(n-1)×2n+n2n+1
两式相减,得:
?sn=21+22+23+…+2n?n2n+1=
2(1?2n)
1?2 ?n2n+1=2n+1?2?n2n+1
∴an=n2nsn=(n-1)2n+1+2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯