正实数xyz,xyz(x+y+z)=4则
答案:3 悬赏:70 手机版
解决时间 2021-11-27 01:27
- 提问者网友:爱唱彩虹
- 2021-11-26 06:22
正实数xyz,xyz(x+y+z)=4则
最佳答案
- 五星知识达人网友:拜訪者
- 2021-11-26 06:40
设t = x+y.
∵ x+y+z = 4,
∴z = 4-(x+y) = 4-t.
又∵xy+yz+zx = 5,
∴xy = 5-z(x+y) = 5-zt = 5-(4-t)t = 5-4t+t².
根据均值不等式, xy ≤ (x+y)²/4 = t²/4,
于是t²/4 ≥ 5-4t+t², 整理得(3t-10)(t-2) ≤ 0, 故2 ≤ t ≤ 10/3, 也即2 ≤ x+y ≤ 10/3.
易验证x = y = 5/3, z = 2/3满足条件, 并使得x+y ≤ 10/3成立等号.
因此x+y的最大值就是10/3.
注: 解释一下取等条件x = y = 5/3, z = 2/3的来源.
当t = 10/3时, 不等式t²/4 ≥ 5-4t+t²成立等号,
这要求均值不等式, xy ≤ (x+y)²/4成立等号, 因此x = y.
而t = x+y, 故x = y = 5/3. 此外z = 4-t = 2/3.
∵ x+y+z = 4,
∴z = 4-(x+y) = 4-t.
又∵xy+yz+zx = 5,
∴xy = 5-z(x+y) = 5-zt = 5-(4-t)t = 5-4t+t².
根据均值不等式, xy ≤ (x+y)²/4 = t²/4,
于是t²/4 ≥ 5-4t+t², 整理得(3t-10)(t-2) ≤ 0, 故2 ≤ t ≤ 10/3, 也即2 ≤ x+y ≤ 10/3.
易验证x = y = 5/3, z = 2/3满足条件, 并使得x+y ≤ 10/3成立等号.
因此x+y的最大值就是10/3.
注: 解释一下取等条件x = y = 5/3, z = 2/3的来源.
当t = 10/3时, 不等式t²/4 ≥ 5-4t+t²成立等号,
这要求均值不等式, xy ≤ (x+y)²/4成立等号, 因此x = y.
而t = x+y, 故x = y = 5/3. 此外z = 4-t = 2/3.
全部回答
- 1楼网友:一袍清酒付
- 2021-11-26 08:26
这个解应该有无数组,因为是正实数,不只限于正整数,所以范围很大,令x=y=1,解方程z(2+z)=4,由于是正实数,所以解得z=2√2 -2(2倍根号2减2)
- 2楼网友:你可爱的野爹
- 2021-11-26 08:20
xyz(x十y十z)=4,
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯