三角恒等变形的倍角公式
答案:1 悬赏:80 手机版
解决时间 2021-11-25 02:52
- 提问者网友:动次大次蹦擦擦
- 2021-11-24 05:09
三角恒等变形的倍角公式
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-11-24 06:01
sin2α = 2cosαsinα = 2tanα / (1 + tan²α)
cos2α = cos²α-sin²α=1-2sin²α=2cos²α-1
tan2α = 2tanα/[1 - (tanα)²] sin2α = sin^2(α + π/4) - cos^2(α + π/4) = 2sin^2(a + π/4) - 1 = 1 - 2cos^2(α + π/4);
cos2α = 2sin(α + π/4)cos(α + π/4) sin3α=3sinα-4sin³α
cos3α=4cos³α-3cosα
tan3α=(3tanα-tan³α)/(1-3tan²α)
sin3α=4sinα×sin(π/3-α)sin(π/3+α)
cos3α=4cosα×cos(π/3-α)cos(π/3+α)
tan3α=tanα×tan(π/3-α)tan(π/3+α) 根据欧拉公式(cos θ+i·sin θ)^n=cos nθ+i·sin nθ (注:sin θ前的 i 是虚数单位,即-1开方)
将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)]
Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)] sin(α/2)=±√[(1-cosα)/2]
cos(α/2)=±√[(1+cosα)/2]
tan(α/2)=±√[(1-sinα)/(1+sinα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα
cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα
sec(α/2)=±√[(2secα/(secα+1)]
csc(α/2)=±√[(2secα/(secα-1)] sin²(α/2)=(1-cosα)/2
cos²(α/2)=(1+cosα)/2
tan²(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα sin²(α/2)=(1-cosα)/2
sin(a/2)=√[(1-cosα)/2] ( a/2在一、二象限)
或=-√[(1-cosα)/2] (a/2在三、四象限)
cos²(α/2)=(1+cosα)/2
cos(a/2)=√[(1+cosα)/2] ( a/2在一、四象限)
或=-√[(1+cosα)/2] (a/2在二、三象限)
tan²(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] ( a/2在一、三象限)
或=-√[(1-cosα)/(1+cosα)] ( a/2在二、四象限)
cos2α = cos²α-sin²α=1-2sin²α=2cos²α-1
tan2α = 2tanα/[1 - (tanα)²] sin2α = sin^2(α + π/4) - cos^2(α + π/4) = 2sin^2(a + π/4) - 1 = 1 - 2cos^2(α + π/4);
cos2α = 2sin(α + π/4)cos(α + π/4) sin3α=3sinα-4sin³α
cos3α=4cos³α-3cosα
tan3α=(3tanα-tan³α)/(1-3tan²α)
sin3α=4sinα×sin(π/3-α)sin(π/3+α)
cos3α=4cosα×cos(π/3-α)cos(π/3+α)
tan3α=tanα×tan(π/3-α)tan(π/3+α) 根据欧拉公式(cos θ+i·sin θ)^n=cos nθ+i·sin nθ (注:sin θ前的 i 是虚数单位,即-1开方)
将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)]
Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)] sin(α/2)=±√[(1-cosα)/2]
cos(α/2)=±√[(1+cosα)/2]
tan(α/2)=±√[(1-sinα)/(1+sinα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα
cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα
sec(α/2)=±√[(2secα/(secα+1)]
csc(α/2)=±√[(2secα/(secα-1)] sin²(α/2)=(1-cosα)/2
cos²(α/2)=(1+cosα)/2
tan²(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα sin²(α/2)=(1-cosα)/2
sin(a/2)=√[(1-cosα)/2] ( a/2在一、二象限)
或=-√[(1-cosα)/2] (a/2在三、四象限)
cos²(α/2)=(1+cosα)/2
cos(a/2)=√[(1+cosα)/2] ( a/2在一、四象限)
或=-√[(1+cosα)/2] (a/2在二、三象限)
tan²(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] ( a/2在一、三象限)
或=-√[(1-cosα)/(1+cosα)] ( a/2在二、四象限)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯