永发信息网

如图,在三棱锥S ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA

答案:1  悬赏:0  手机版
解决时间 2021-02-01 00:01
  • 提问者网友:雾里闻花香
  • 2021-01-31 14:07
如图,在三棱锥S ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA
最佳答案
  • 五星知识达人网友:摆渡翁
  • 2021-01-31 15:18
(1)见解析  (2)见解析


证明:(1)因为AS=AB,AF⊥SB,垂足为F,
所以F是SB的中点.
又因为E是SA的中点,
所以EF∥AB.
因为EF?平面ABC,AB?平面ABC,
所以EF∥平面ABC.
同理EG∥平面ABC.
又EF∩EG=E,
所以平面EFG∥平面ABC.
(2)因为平面SAB⊥平面SBC,且交线为SB,
又AF?平面SAB,AF⊥SB,
所以AF⊥平面SBC.
因为BC?平面SBC,
所以AF⊥BC.
又因为AB⊥BC,AF∩AB=A,AF?平面SAB,
AB?平面SAB,
所以BC⊥平面SAB.
因为SA?平面SAB,
所以BC⊥SA.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯