永发信息网

若a=(cosa,sina),b=(cosb,sinb),且|ka+b|=√3|a-kb|,k>0 ,问a与b能否垂直

答案:1  悬赏:10  手机版
解决时间 2021-02-20 09:18
  • 提问者网友:辞取
  • 2021-02-19 10:26
若a=(cosa,sina),b=(cosb,sinb),且|ka+b|=√3|a-kb|,k>0 ,
问a与b能否垂直
若ab夹角为60,求k
最佳答案
  • 五星知识达人网友:舊物识亽
  • 2021-02-19 11:53
若a、b垂直,则有:a*b=0。
将|ka+b|=√3|a-kb|两边同时平方得:
k^2*a^2+2ka*b+b^2=3a^2-2*3ka*b+3k^2*b^2 (1)
即: k^2*a^2+b^2=3a^2+3k^2*b^2
而:a^2=b^2=1,所以:
k^2+1=3+3k^2
k无解。所以a与b不能垂直。

若ab夹角为60,则有:a*b=|a|*|b|*cos60'=1/2|a|*|b|
由于|a|=|b|=1,所以:a*b=1/2
代入式(1)得:
k^2*a^2+k+b^2=3a^2-3k+3k^2*b^2
再代入a^2=b^2=1,可得:
k^2+k+1=3-3k+3k^2
解得:k=1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯