永发信息网

我想知道,什么叫质数?

答案:4  悬赏:60  手机版
解决时间 2021-02-12 09:13
  • 提问者网友:niaiwoma
  • 2021-02-12 00:47
我想知道,什么叫质数?
最佳答案
  • 五星知识达人网友:空山清雨
  • 2021-02-12 00:52
质数又称为素数,是一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。
全部回答
  • 1楼网友:想偏头吻你
  • 2021-02-12 02:36
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。因为合数是由若干个质数相乘而得来的,所以,没有质数就没有合数,由此可见素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理每一个比1大的数(即每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数的在乘积中的顺序,那么写出来的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。 只有1和它本身两个正因数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。) 100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 注:(1)2和3是所有素数中唯一两个连着的数。 (2)2是唯一一个为偶数(双数)的质数。[1] 质数的平方数只有三个因数. 2数目 证明 质数的个数是无穷的。 最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了证明常用的方法:反证法。具体的证明如下: ●假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。 ●如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。 ●如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。 ●因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。 ●对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。 ●所以原先的假设不成立。也就是说,素数有无穷多个。 其他数学家也给出了他们自己的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。 计算 尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。 素数、即质数,是在大于1的整数中只能被1和其自身整除的数。梅森素数以法国数学家马兰.梅森命名,指的是形如2的P次幂减一的素数,而P本身也是素数。迄今为止,数学界共计发现48个梅森素数。中央密苏里大学在2013年1月25日协调世界时23:30:26发现的那一素数2的57,885,161次幂减一为迄今发现的最大素数。 诚心为您回答,希望可以帮助到您,赠人玫瑰,手有余香,好人一生平安,有用的话,给个好评吧O(∩_∩)O~
  • 2楼网友:狂恋
  • 2021-02-12 02:03
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。 如:2,3,5,7……
  • 3楼网友:傲气稳了全场
  • 2021-02-12 01:10
质数的概念 所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。 质数的奥秘 质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 质数的性质 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,fn分别给出3、5、17、257、65537,都是质数,由于f5太大(f5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,fn都是质数。但是,就是在f5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:f5=4294967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的fn值,数学家再也没有找到哪个fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 质数的假设 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,mp都是素数,但m11=2047=23×89不是素数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 质数表上的质数 现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯