在△ABC中,AB=AC=5,且△ABC的面积为12,求△ABC外接圆半径
答案:1 悬赏:0 手机版
解决时间 2021-04-14 14:27
- 提问者网友:美人性情
- 2021-04-14 02:32
没图的,初三数学,不要太复杂
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-04-14 03:04
解:作AO垂直BC于O,设圆心为W。
∵在△ABC中,AB=AC=5,即△ABC为等腰三角形,即△ABC外接圆圆心在△ABC的底边的中垂线上。又△ABC的面积为12。还有AO垂直BC于O。
∴有CO=OB,且S△ABC=(BC×AO)/2=[2·√(5^2-AO^2)×AO]/2=√(5^2-AO^2)×AO=12,得:AO=4,即CO=OB=3。且有AW=BW=CW。
∴AW+WO=AO=4,且√(BW^2-BO^2)=√(AW^2-9)=WO,得:AW=25/8。即△ABC外接圆的半径为25/8。
∵在△ABC中,AB=AC=5,即△ABC为等腰三角形,即△ABC外接圆圆心在△ABC的底边的中垂线上。又△ABC的面积为12。还有AO垂直BC于O。
∴有CO=OB,且S△ABC=(BC×AO)/2=[2·√(5^2-AO^2)×AO]/2=√(5^2-AO^2)×AO=12,得:AO=4,即CO=OB=3。且有AW=BW=CW。
∴AW+WO=AO=4,且√(BW^2-BO^2)=√(AW^2-9)=WO,得:AW=25/8。即△ABC外接圆的半径为25/8。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯