已知平均值为125 方差为0.02 求数学期望
答案:1 悬赏:20 手机版
解决时间 2021-01-19 12:06
- 提问者网友:饥饿走向夜
- 2021-01-18 21:19
已知平均值为125 方差为0.02 求数学期望
最佳答案
- 五星知识达人网友:拾荒鲤
- 2021-01-18 22:50
不用二重积分的,可以有简单的办法的.
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)] 其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下. 于是: ∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*) 积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了. (1)求均值 对(*)式两边对u求导: ∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0 约去常数,再两边同乘以1/(√2π)t得: ∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0 把(u-x)拆开,再移项: ∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx 也就是 ∫x*f(x)dx=u*1=u 这样就正好凑出了均值的定义式,证明了均值就是u. (2)方差 过程和求均值是差不多的,我就稍微略写一点了. 对(*)式两边对t求导: ∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π 移项: ∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2 也就是 ∫(x-u)^2*f(x)dx=t^2 正好凑出了方差的定义式,从而结论得证.
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)] 其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下. 于是: ∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*) 积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了. (1)求均值 对(*)式两边对u求导: ∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0 约去常数,再两边同乘以1/(√2π)t得: ∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0 把(u-x)拆开,再移项: ∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx 也就是 ∫x*f(x)dx=u*1=u 这样就正好凑出了均值的定义式,证明了均值就是u. (2)方差 过程和求均值是差不多的,我就稍微略写一点了. 对(*)式两边对t求导: ∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π 移项: ∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2 也就是 ∫(x-u)^2*f(x)dx=t^2 正好凑出了方差的定义式,从而结论得证.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯