永发信息网

关于高中数学圆锥曲线中椭圆的问题已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F

答案:2  悬赏:40  手机版
解决时间 2021-02-12 12:16
  • 提问者网友:动次大次蹦擦擦
  • 2021-02-11 20:45
关于高中数学圆锥曲线中椭圆的问题已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F
最佳答案
  • 五星知识达人网友:慢性怪人
  • 2021-02-11 20:50
这个是利用二次方程的韦达定理吧:AX^2+BX+C=0(A不等于0)韦达定理:如果有解,那么这个二次方程的解X1、X2与系数之间有以下关系:X1+X2=-B/AX1*X2=C/A这个是可以根据公式解自己推出来的啦======以下答案可供参考======供参考答案1:|xa-xb|=√[(xa+xb)^2-4xa*xb] = √ { [ 2k/(2+k) ]^2 - 4 [-1/ (2+k^2) ] } =√ [ 4k^2+4(2+k^2)] / (2+k^2)即:|Xa-Xb| = √(8k^2+8) / (2+k^2) 知道了吧?他是把完全平方差公式和完全平方和公式进行结合使用的方法。供参考答案2:这个是根据韦达定理推出来的供参考答案3:不解
全部回答
  • 1楼网友:鱼忧
  • 2021-02-11 21:02
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯