永发信息网

设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²

答案:1  悬赏:0  手机版
解决时间 2021-08-21 01:24
  • 提问者网友:火车头
  • 2021-08-20 08:58
设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²=f″(x0).
不要用洛必达法则.
最佳答案
  • 五星知识达人网友:神的生死簿
  • 2021-08-20 09:57

用微分公式,其中的有限增量公式,由于f(x)在x0邻域二阶可导,必定一阶可导,因此有f(x0+h)-f(x0)=f'(x0)h+o(h).同理f(x0)-f(x0-h)=f'(x0)h+o(h).因此f(x0+h)+f(x0-h)-2f(x0)/h²={[f(x0+h)-f(x0)]/h+[f(x0)-f(x0-h)]/h}/h,代入上式并取极限,即可证明
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯