如何理解矩阵奇异值和特征值?
答案:2 悬赏:10 手机版
解决时间 2021-11-28 23:07
- 提问者网友:你独家记忆
- 2021-11-28 01:35
如何理解矩阵奇异值和特征值?
最佳答案
- 五星知识达人网友:白昼之月
- 2021-11-28 02:56
基本介绍
奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。[1]
编辑本段理论描述
假设M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得
M = UΣV*,
其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。
常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。)
直观的解释[2]
在矩阵M的奇异值分解中 M = UΣV*
·V的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是M*M的特征向量。
·U的列(columns)组成一套对M的正交"输出"的基向量。这些向量是MM*的特征向量。
·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。
奇异值和奇异向量, 以及他们与奇异值分解的关系
一个非负实数σ是M的一个奇异值仅当存在Km 的单位向量u和Kn的单位向量v如下 :
其中向量u 和v分别为σ的左奇异向量和右奇异向量。
对于任意的奇异值分解
矩阵Σ的对角线上的元素等于M的奇异值. U和V的列分别是奇异值中的左、右奇异向量。因此,上述定理表明:
一个m × n的矩阵至少有一个最多有 p = min(m,n)个不同的奇异值。
总是可以找到在Km 的一个正交基U,组成M的左奇异向量。
总是可以找到和Kn的一个正交基V,组成M的右奇异向量。
如果一个奇异值中可以找到两个左(或右)奇异向量是线性相关的,则称为退化。
非退化的奇异值具有唯一的左、右奇异向量,取决于所乘的单位相位因子eiφ(根据实际信号)。因此,如果M的所有奇异值都是非退化且非零,则它的奇异值分解是唯一的,因为U中的一列要乘以一个单位相位因子且同时V中相应的列也要乘以同一个相位因子。
根据定义,退化的奇异值具有不唯一的奇异向量。因为,如果u1和u2为奇异值σ的两个左奇异向量,则两个向量的任意规范线性组合也是奇异值σ一个左奇异向量,类似的,右奇异向量也具有相同的性质。因此,如果M 具有退化的奇异值,则它的奇异值分解是不唯一的。
与特征值分解的联系
几何意义
因为U 和V 向量都是单位化的向量, 我们知道U的列向量u1,...,um组成了Km空间的一组标准正交基。同样,V的列向量v1,...,vn也组成了Kn空间的一组标准正交基(根据向量空间的标准点积法则).
线性变换T: Kn → Km,把向量x变换为Mx。考虑到这些标准正交基,这个变换描述起来就很简单了: T(vi) = σi ui, for i = 1,...,min(m,n), 其中σi 是对角阵Σ中的第i个元素; 当i > min(m,n)时,T(vi) = 0。
这样,SVD理论的几何意义就可以做如下的归纳:对于每一个线性映射T: Kn → Km,T把Kn的第i个基向量映射为Km的第i个基向量的非负倍数,然后将余下的基向量映射为零向量。对照这些基向量,映射T就可以表示为一个非负对角阵。来自:求助得到的回答
奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。[1]
编辑本段理论描述
假设M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是 实数域或复数域。如此则存在一个分解使得
M = UΣV*,
其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。
常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。)
直观的解释[2]
在矩阵M的奇异值分解中 M = UΣV*
·V的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是M*M的特征向量。
·U的列(columns)组成一套对M的正交"输出"的基向量。这些向量是MM*的特征向量。
·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。
奇异值和奇异向量, 以及他们与奇异值分解的关系
一个非负实数σ是M的一个奇异值仅当存在Km 的单位向量u和Kn的单位向量v如下 :
其中向量u 和v分别为σ的左奇异向量和右奇异向量。
对于任意的奇异值分解
矩阵Σ的对角线上的元素等于M的奇异值. U和V的列分别是奇异值中的左、右奇异向量。因此,上述定理表明:
一个m × n的矩阵至少有一个最多有 p = min(m,n)个不同的奇异值。
总是可以找到在Km 的一个正交基U,组成M的左奇异向量。
总是可以找到和Kn的一个正交基V,组成M的右奇异向量。
如果一个奇异值中可以找到两个左(或右)奇异向量是线性相关的,则称为退化。
非退化的奇异值具有唯一的左、右奇异向量,取决于所乘的单位相位因子eiφ(根据实际信号)。因此,如果M的所有奇异值都是非退化且非零,则它的奇异值分解是唯一的,因为U中的一列要乘以一个单位相位因子且同时V中相应的列也要乘以同一个相位因子。
根据定义,退化的奇异值具有不唯一的奇异向量。因为,如果u1和u2为奇异值σ的两个左奇异向量,则两个向量的任意规范线性组合也是奇异值σ一个左奇异向量,类似的,右奇异向量也具有相同的性质。因此,如果M 具有退化的奇异值,则它的奇异值分解是不唯一的。
与特征值分解的联系
几何意义
因为U 和V 向量都是单位化的向量, 我们知道U的列向量u1,...,um组成了Km空间的一组标准正交基。同样,V的列向量v1,...,vn也组成了Kn空间的一组标准正交基(根据向量空间的标准点积法则).
线性变换T: Kn → Km,把向量x变换为Mx。考虑到这些标准正交基,这个变换描述起来就很简单了: T(vi) = σi ui, for i = 1,...,min(m,n), 其中σi 是对角阵Σ中的第i个元素; 当i > min(m,n)时,T(vi) = 0。
这样,SVD理论的几何意义就可以做如下的归纳:对于每一个线性映射T: Kn → Km,T把Kn的第i个基向量映射为Km的第i个基向量的非负倍数,然后将余下的基向量映射为零向量。对照这些基向量,映射T就可以表示为一个非负对角阵。来自:求助得到的回答
全部回答
- 1楼网友:野味小生
- 2021-11-28 03:14
你先讲清楚你能理解到什么程度,然后我再视情况帮你稍微加深一下理解。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯