永发信息网

已知向量a=(1+cosα,sinα),b=(1-cosβ,sinβ),c=(1,0),α∈(0,π)β∈(π,2π),向量a与c的夹角为θ1,向量b与c的夹角为θ2,且θ1-θ2=π/6,求α-β的

答案:1  悬赏:0  手机版
解决时间 2021-05-06 11:58
  • 提问者网友:雾里闻花香
  • 2021-05-05 21:40
已知向量a=(1+cosα,sinα),b=(1-cosβ,sinβ),c=(1,0),α∈(0,π)β∈(π,2π),向量a与c的夹角为θ1,向量b与c的夹角为θ2,且θ1-θ2=π/6,求α-β的值
最佳答案
  • 五星知识达人网友:山君与见山
  • 2021-05-05 23:17

因为a∈(0,π),β∈(π,2π)
所以sina>0,sinβ<0,又1+cosα>0,1-cosβ>0,所以tanθ1=sinα/(1+cosα)
=2sin(α/2)cos(α/2)÷{1+[cos(α/2)]^2-[sin(α/2)]^2}
=2sin(α/2)cos(α/2)÷{2[cos(α/2)]^2}
=sin(α/2)/cos(α/2)
=tan(α/2)
tan(θ2)=-sinβ/(1-cosβ)
=-2sin(β/2)cos(β/2)÷{1-[cos(β/2)]^2+[sin(β/2)]^2}
=-2sin(β/2)cos(β/2)÷{2[sin(β/2)]^2}
=-cos(β/2)/sin(β/2)
=-cot(β/2)
又θ1-θ2=π/6,所以有tan(θ1-θ2)=tanπ/6=(√3)/3
而tan(θ1-θ2)=(tanθ1-tanθ2)/(1+tanθ1tanθ2)
={tan(α/2)-[-cot(β/2)]}/[1-tan(α/2)cot(β/2)]
=[sin(α/2)sin(β/2)+cos(β/2)cos(α/2)]/[sin(β/2)cos(α/2)-sin(α/2)cos(β/2)]
=cos[(α-β)/2]/sin[(β-α)/2]
=-cot[(α-β)/2]
所以cot[(α-β)/2]=-(√3)/3
所以tan[(α-β)/2]=-√3


那么(α-β)/2=-60°


α-β=-120°


求什么都可以了


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯