解答题
观察下列等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4,-1+3-5+7-9=-5,-1+3-5+7-9+11=6,…
(1)猜想反映一般规律的数学表达式;??(2)用数学归纳法证明该表达式.
解答题观察下列等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4
答案:2 悬赏:80 手机版
解决时间 2021-03-24 23:18
- 提问者网友:绫月
- 2021-03-24 14:53
最佳答案
- 五星知识达人网友:怀裏藏嬌
- 2019-05-26 09:42
解:(1)观察等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4,-1+3-5+7-9=-5,-1+3-5+7-9+11=6,…
可得-1+3-5+…+(-1)n(2n-1)=(-1)n?n.
(2)证明:①n=1时,左式=右式=-1,等式成立.
②假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k?k,
则当n=k+1时,
左式=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)k?k+(-1)k+1(2k+1)
=(-1)k+1(-k+2k+1)
=(-1)k+1(k+1)=右式,
即n=k+1时,等式成立.
根据①,②,等式对任意的n∈N*均成立.解析分析:(1)利用归纳推理以及所给式子的结构特征,得出结论-1+3-5+…+(-1)n(2n-1)=(-1)n?n.(2)先证明n=1时,等式成立,假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k?k,在此基础上利用假设证明n=k+1时,等式也成立,从而得到等式对任意的n∈N*均成立点评:本题主要考查归纳推理,用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,式子的变形是解题的关键.
可得-1+3-5+…+(-1)n(2n-1)=(-1)n?n.
(2)证明:①n=1时,左式=右式=-1,等式成立.
②假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k?k,
则当n=k+1时,
左式=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)k?k+(-1)k+1(2k+1)
=(-1)k+1(-k+2k+1)
=(-1)k+1(k+1)=右式,
即n=k+1时,等式成立.
根据①,②,等式对任意的n∈N*均成立.解析分析:(1)利用归纳推理以及所给式子的结构特征,得出结论-1+3-5+…+(-1)n(2n-1)=(-1)n?n.(2)先证明n=1时,等式成立,假设n=k时,等式成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k?k,在此基础上利用假设证明n=k+1时,等式也成立,从而得到等式对任意的n∈N*均成立点评:本题主要考查归纳推理,用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,式子的变形是解题的关键.
全部回答
- 1楼网友:春色三分
- 2019-08-10 13:13
你的回答很对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯