已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,试证明以a、b、c为三边的三角形是直角三角形.
答案:5 悬赏:20 手机版
解决时间 2021-01-13 00:23
- 提问者网友:戎马万世
- 2021-01-12 13:35
已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,试证明以a、b、c为三边的三角形是直角三角形.
最佳答案
- 五星知识达人网友:山有枢
- 2019-11-08 12:31
证明:a(1-x2)+2bx+c(1+x2)=0
去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,
∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2.
∴以a、b、c为三边的三角形是直角三角形.解析分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,
∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2.
∴以a、b、c为三边的三角形是直角三角形.解析分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
全部回答
- 1楼网友:一秋
- 2020-07-23 09:09
谢谢解答
- 2楼网友:夜风逐马
- 2019-09-10 09:31
不错,直接导航啦
- 3楼网友:狂恋
- 2020-01-18 01:29
这个地方不难找的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯