解答题
过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点,设切线AP、AQ的斜率分别为k1和k2.
(Ⅰ)求证:k1k2=-4;
(Ⅱ)求证:直线PQ恒过定点,并求出此定点坐标.
解答题过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点,
答案:2 悬赏:20 手机版
解决时间 2021-04-11 08:01
- 提问者网友:愿为果
- 2021-04-11 01:03
最佳答案
- 五星知识达人网友:狂恋
- 2021-04-11 02:18
证明:(Ⅰ)设过A(a,0)与抛物线y=x2+1的相切的直线的斜率是k,
则该切线的方程为:y=k(x-a),代入抛物线,消去y可得x2-kx+(ka+1)=0
∴△=k2-4(ka+1)=k2-4ak-4=0
∴k1,k2都是方程k2-4ak-4=0的解,∴k1k2=-4
(Ⅱ)设P(x1,y1),Q(x2,y2)
由于y'=2x,故切线AP的方程是:y-y1=2x1(x-x1)
则-y1=2x1(a-x1)=2x1a-2x12=2x1a-2(y1-1),∴y1=2x1a+2,
同理y2=2x2a+2
∴直线PQ的方程是y=2ax+2,
∴直线PQ过定点(0,2).解析分析:(Ⅰ)设出切线的方程代入抛物线,消去y可得x2-kx+(ka+1)=0,利用判别式等于0,即可证得结论;(Ⅱ)确定切线AP、AQ的方程,从而可得直线PQ的方程,即可得到直线PQ过定点.点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.注意设而不求方法的运用.
则该切线的方程为:y=k(x-a),代入抛物线,消去y可得x2-kx+(ka+1)=0
∴△=k2-4(ka+1)=k2-4ak-4=0
∴k1,k2都是方程k2-4ak-4=0的解,∴k1k2=-4
(Ⅱ)设P(x1,y1),Q(x2,y2)
由于y'=2x,故切线AP的方程是:y-y1=2x1(x-x1)
则-y1=2x1(a-x1)=2x1a-2x12=2x1a-2(y1-1),∴y1=2x1a+2,
同理y2=2x2a+2
∴直线PQ的方程是y=2ax+2,
∴直线PQ过定点(0,2).解析分析:(Ⅰ)设出切线的方程代入抛物线,消去y可得x2-kx+(ka+1)=0,利用判别式等于0,即可证得结论;(Ⅱ)确定切线AP、AQ的方程,从而可得直线PQ的方程,即可得到直线PQ过定点.点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.注意设而不求方法的运用.
全部回答
- 1楼网友:夜余生
- 2021-04-11 03:23
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯