永发信息网

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是A.直线l上的所有点都是“点”

答案:2  悬赏:20  手机版
解决时间 2021-04-11 15:01
  • 提问者网友:心如荒岛囚我终老
  • 2021-04-11 07:46
点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”
最佳答案
  • 五星知识达人网友:末日狂欢
  • 2021-04-11 08:16
A解析分析:根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l上的所有点都符合.解答:设A(m,n),P(x,x-1)则,B(2m-x,2n-x+1)∵A,B在y=x2上∴n=m2,2n-x+1=(2m-x)2消去n,整理得关于x的方程?x2-(4m-1 )x+2m2-1=0∵△=8m2-8m+5>0恒成立,∴方程恒有实数解,∴故选A.点评:本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.
全部回答
  • 1楼网友:十年萤火照君眠
  • 2021-04-11 08:26
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯