永发信息网

在四棱锥P-ABCD中,底面ABCD是直角梯形,AB//CD,角ABC=90°AB=PB=PC=BC=2CD,平面PBC垂直平面ABCD

答案:1  悬赏:40  手机版
解决时间 2021-11-25 21:07
  • 提问者网友:美人性情
  • 2021-11-25 05:49
在四棱锥P-ABCD中,底面ABCD是直角梯形,AB//CD,角ABC=90°AB=PB=PC=BC=2CD,平面PBC垂直平面ABCD
最佳答案
  • 五星知识达人网友:舊物识亽
  • 2021-11-25 06:28
(1)
根据三维坐标系性质,证明如下:
将梯形ABCD置于X-Y平面中,B点在坐标原点,BC与Y轴重合。
∵∠ABC=90°
∴AB与X轴重合
△BCP平面与梯形ABCD平面垂直,即与X-Y平面垂直。
∵BC与Y轴重合
∴△BCP平面在Y-Z平面上
∵在三维坐标系中,X轴与Y-Z平面垂直
∴AB与△BCP平面垂直
证毕。还有其他证明方法,此处仅供参考。
(2)
根据投影原理,分析如下:
在平面PBC上,有一束光,将P点投影到BC的E点位置,PE⊥BC。
在平面PAD上,另一束光,将P点投影到AD的F点位置,PF⊥AD。
两束光的夹角就是平面PBC和平面PAD的夹角。
连接PE、PF和EF,△PEF是直角三角形,∠EPF是该两个平面的夹角。
见图,计算如下:
在俯视图中:
BE=CE=CD
AE^2=BE^2+AB^2=5CD^2
DE^2=CE^2+CD^2=2CD^2
AD^2=5CD^2
在正左视图中:
PB=PC=2CD PE是三角形的高
PE^2=PB^2-BE^2=3CD^2
PE=√3CD
在侧前视图中:
PA^2=PE^2+AE^2=8CD^2
在侧后视图中:
PD^2=PE^2+DE^2=5CD^2
PD=AD=√5CD
在侧右视图中:
PA/Sinα=PD/Sin[(180°-α)/2]=PD/Cos(α/2)
[Cos(α/2)]^2/( Sinα)^2=PA^2/PD^2=5/8
(1+Cosα)×4=5×[1-(Cosα)^2]
(1+Cosα)×4=5×(1+Cosα)×(1-Cosα)
5Cosα=1  Cosα=1/5=DF/PD
DF=PD/5=√5CD/5  
DF^2=CD^2/5
PF^2=PD^2-DF^2=5CD^2-CD^2/5
     =24CD^2/5
PF=√(24/5)CD
在夹角剖面图中:
Cos(∠EPF)=PE/PF=√3CD/√(24/5)CD
        =√(5/8)
        =(√10)/4≈0.79
∠EPF≈37.8°
答:平面PAD和平面PBC的夹角约为37.8度。
供参考。

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯