求经过圆X的平方+Y的平方+2X+4Y-3=0与直线X+Y+1=0的交点,且圆心在直线2Y=X上的圆的方程
求经过圆X的平方+Y的平方+2X+4Y-3=0与直线X+Y+1=0的交点,且圆心在直线2Y=X上的圆的方程
答案:1 悬赏:80 手机版
解决时间 2021-03-21 07:04
- 提问者网友:低吟詩仙的傷
- 2021-03-20 16:49
最佳答案
- 五星知识达人网友:冷風如刀
- 2021-03-20 18:00
这题目用圆系来解非常方便的:
因为经过圆X的平方+Y的平方+2X+4Y-3=0与直线X+Y+1=0的交点
可设圆的方程:
x²+y²+2x+4y-3+β(x+y+1)=0
x²+y²+(2+β)x+(4+β)y+(-3+β)=0
圆心(-(2+β)/2,-(4+β)/2)在2Y=X上,
(2+β)/2=(4+β),β=-6代入得:
x²+y²+(2-6)x+(4-6)y+(-3-6)=0
即所求的圆的方程为:x²+y²-4x-2y-9=0
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯