已知log以a为底,X为真数=1,log以b为底,X为真数=2 ,log以c为底,X为真数=4
则log以a乘b乘c为底,X为真数等于多少?
已知log以a为底,X为真数=1,log以b为底,X为真数=2 ,log以c为底,X为真数=4
则log以a乘b乘c为底,X为真数等于多少?
换底公式
logax=|gx/|ga=1
logbx=|gx/|gb=2
logcx=|gx/|gc=4
(|ga+|gb+|gc)/|gx=1+1/2+1/4=7/4
log(abc)x=|gx/|gabc=|gx/(|ga+|gb+|gc)=4/7