LR分析法的SLR(1)分析表的构造
答案:1 悬赏:20 手机版
解决时间 2021-11-30 19:54
- 提问者网友:王者佥
- 2021-11-30 05:34
LR分析法的SLR(1)分析表的构造
最佳答案
- 五星知识达人网友:西风乍起
- 2021-11-30 05:56
在前面讨论LR(0)分析表的构造算法时,我们曾经指出,仅当一个文法G是LR(0)文法时,才能对它构造出无冲突动作的LR(0)分析表。然而,对于通常的程序设计语言来说,它们一般都不能用LR(0)文法来描述。例如,考虑如下“简单分程序”的文法G[B′]:
0? B′→B3? D→d
1? B→bD;Se4? S→s;S
2? D→D;d5? S→s
相应识别其全部活前缀的DFA及LR(0)分析表如图417及表414所示。由于在项目集I8中,既含有移进项目[S→s·;S],又含有归约项目[S→s·],因而反映到分析表中就出现了具有多重定义的元素ACTION[8,′;′]={s10,r5},前者指明当输入符号为“;”时应将它移进栈中,而后者则要求按第5个产生式S→s进行归约。于是就出现了有“移进归约”冲突的分析动作。又如,对于通常用来描述简单表达式的文法G[E],当构造它的项目集规范族时,也会出现类似的情况。这就表明,这两个文法都不是LR(0)文法。然而,尽管如此,对大多数程序设计语言来说,这种具有冲突项目的项目集,在整个项目集规范族中所占的比例毕竟是很小的。因此,如果我们能设法解决出现在一个项目集中的“移进归约”或“归约归约”冲突,那么,只要对前述构造LR(0)分析表的算法稍加修改,它仍能适用于我们现在讨论的情况。
表414G[B′]的LR(0)分析表
b[]d[];[]s[]e[]#[]B[]D[]S0[]s2[8]11[7]acc2[3]s4[9]33[4]s54[]r3[]r3[]r3[]r3[]r3[]r35[][]s7[][]s8[10]66[6]s97[]r2[]r2[]r2[]r2[]r2[]r28[]r5[]r5[]r5,s10[]r5[]r5[]r59[]r1[]r1[]r1[]r1[]r1[]r110[5]s8[10]1111[]r4[]r4[]r4[]r4[]r4[]r4
仔细分析上述构造LR(0)分析表的算法容易看出,使分析表中出现多重定义分析动作的原因在于其中的规则(2),即对于每一项目集Ii中的归约项目A→α·,不管当前的输入符号是什么,都把ACTION子表相应于Ii那一行 (即第i行)的各个元素指定为rj,其中j是产生式A→α的编号。因此,如果该项目集Ii中同时还含有形如B→α·bβ或C→α·的项目,则在分析表的第i行中,必然会出现多重定义的元素。
由此可见,对于含有冲突的项目集
Ii={B→α·bβ,A→α·,C→α·}
在构造分析表时,如果能根据不同的向前符号a,将Ii中各项目所对应的分析动作加以区分,那么就有可能使冲突得到解决。为此,对于文法中的非终结符号U,我们定义集合
FOLLOW(U)={a|S′#?*…Ua…, a∈VT∪{#}}
即FOLLOW(U)是由所有含U的句型中,直接跟在U后的终结符号或#组成的集合。现对上述项目集Ii,考察FOLLOW(A),FOLLOW(C)及{b},若它们两两不相交,则可采用下面的方法,对Ii中各个项目所对应的分析动作加以区分。
对任何输入符号a:
(1) 当a=b时,置ACTION[i,b]=“移进”;
(2) 当a∈FOLLOW(A)时,置ACTION[i,a]={按产生式A→α归约};
(3) 当a∈FOLLOW(C)时,置ACTION[i,a]={按产生式C→α归约};
(4) 当a不属于上述三种情况之一时,置ACTION[i,a]=“ERROR”。
一般地,若一个项目集I含有多个移进项目和归约项目,例如
I={A1→α·a1β1, A2→α·a2β2,…,Am→α·amβm, B1→α·, B2→α·, …, Bn→α·}
则当集合{a1,a2,…,am},FOLLOW(B1),FOLLOW(B2),…,FOLLOW(Bn)两两不相交时,可类似地根据不同的向前符号,对状态为i时的冲突动作进行区分。
上述用来解决分析动作冲突的方法称为SLR(1)规则。此规则是由F?DeRemer于1971年提出的。
有了SLR(1)规则之后,只须对前述构造LR(0)分析表的算法中的规则(2)作如下的修改:“(2)′若归约项目A→α·属于Ii,设A→α为文法的第j个产生式,则对于任何属于FOLLOW(A)的输入符号a,置ACTION[i,a]=rj”,且其余的规则仍保持不变,就得到了构造SLR(1)分析表的算法。
对于给定的文法G,若按上述算法构造的分析表不含多重定义的元素,则称文法G为SLR(1)文法。例如,对于上面的文法G[B′],它的项目集
I8={S→s·; S,S→s·}
含有冲突的项目,但由于FOLLOW(S)={e}≠{;},故冲突可用SLR(1)规则解决,与上述项目相应的分析动作分别是:
ACTION[8,;]=s10ACTION[8,e]=r5
此外,再注意到FOLLOW(B′)=FOLLOW(B)={#}和FOLLOW(D)={;},则按上述算法为G[B′]所构造的SLR(1)分析表b[]d[];[]s[]e[]#[]B[]D[]S0[]s2[8]11[7]acc2[3]s4[9]33[4]s54[4]r35[3]s7[][]s8[10]66[6]s97[4]r28[4]s10[][]r59[7]r110[5]s8[10]1111[6]r4
0? B′→B3? D→d
1? B→bD;Se4? S→s;S
2? D→D;d5? S→s
相应识别其全部活前缀的DFA及LR(0)分析表如图417及表414所示。由于在项目集I8中,既含有移进项目[S→s·;S],又含有归约项目[S→s·],因而反映到分析表中就出现了具有多重定义的元素ACTION[8,′;′]={s10,r5},前者指明当输入符号为“;”时应将它移进栈中,而后者则要求按第5个产生式S→s进行归约。于是就出现了有“移进归约”冲突的分析动作。又如,对于通常用来描述简单表达式的文法G[E],当构造它的项目集规范族时,也会出现类似的情况。这就表明,这两个文法都不是LR(0)文法。然而,尽管如此,对大多数程序设计语言来说,这种具有冲突项目的项目集,在整个项目集规范族中所占的比例毕竟是很小的。因此,如果我们能设法解决出现在一个项目集中的“移进归约”或“归约归约”冲突,那么,只要对前述构造LR(0)分析表的算法稍加修改,它仍能适用于我们现在讨论的情况。
表414G[B′]的LR(0)分析表
b[]d[];[]s[]e[]#[]B[]D[]S0[]s2[8]11[7]acc2[3]s4[9]33[4]s54[]r3[]r3[]r3[]r3[]r3[]r35[][]s7[][]s8[10]66[6]s97[]r2[]r2[]r2[]r2[]r2[]r28[]r5[]r5[]r5,s10[]r5[]r5[]r59[]r1[]r1[]r1[]r1[]r1[]r110[5]s8[10]1111[]r4[]r4[]r4[]r4[]r4[]r4
仔细分析上述构造LR(0)分析表的算法容易看出,使分析表中出现多重定义分析动作的原因在于其中的规则(2),即对于每一项目集Ii中的归约项目A→α·,不管当前的输入符号是什么,都把ACTION子表相应于Ii那一行 (即第i行)的各个元素指定为rj,其中j是产生式A→α的编号。因此,如果该项目集Ii中同时还含有形如B→α·bβ或C→α·的项目,则在分析表的第i行中,必然会出现多重定义的元素。
由此可见,对于含有冲突的项目集
Ii={B→α·bβ,A→α·,C→α·}
在构造分析表时,如果能根据不同的向前符号a,将Ii中各项目所对应的分析动作加以区分,那么就有可能使冲突得到解决。为此,对于文法中的非终结符号U,我们定义集合
FOLLOW(U)={a|S′#?*…Ua…, a∈VT∪{#}}
即FOLLOW(U)是由所有含U的句型中,直接跟在U后的终结符号或#组成的集合。现对上述项目集Ii,考察FOLLOW(A),FOLLOW(C)及{b},若它们两两不相交,则可采用下面的方法,对Ii中各个项目所对应的分析动作加以区分。
对任何输入符号a:
(1) 当a=b时,置ACTION[i,b]=“移进”;
(2) 当a∈FOLLOW(A)时,置ACTION[i,a]={按产生式A→α归约};
(3) 当a∈FOLLOW(C)时,置ACTION[i,a]={按产生式C→α归约};
(4) 当a不属于上述三种情况之一时,置ACTION[i,a]=“ERROR”。
一般地,若一个项目集I含有多个移进项目和归约项目,例如
I={A1→α·a1β1, A2→α·a2β2,…,Am→α·amβm, B1→α·, B2→α·, …, Bn→α·}
则当集合{a1,a2,…,am},FOLLOW(B1),FOLLOW(B2),…,FOLLOW(Bn)两两不相交时,可类似地根据不同的向前符号,对状态为i时的冲突动作进行区分。
上述用来解决分析动作冲突的方法称为SLR(1)规则。此规则是由F?DeRemer于1971年提出的。
有了SLR(1)规则之后,只须对前述构造LR(0)分析表的算法中的规则(2)作如下的修改:“(2)′若归约项目A→α·属于Ii,设A→α为文法的第j个产生式,则对于任何属于FOLLOW(A)的输入符号a,置ACTION[i,a]=rj”,且其余的规则仍保持不变,就得到了构造SLR(1)分析表的算法。
对于给定的文法G,若按上述算法构造的分析表不含多重定义的元素,则称文法G为SLR(1)文法。例如,对于上面的文法G[B′],它的项目集
I8={S→s·; S,S→s·}
含有冲突的项目,但由于FOLLOW(S)={e}≠{;},故冲突可用SLR(1)规则解决,与上述项目相应的分析动作分别是:
ACTION[8,;]=s10ACTION[8,e]=r5
此外,再注意到FOLLOW(B′)=FOLLOW(B)={#}和FOLLOW(D)={;},则按上述算法为G[B′]所构造的SLR(1)分析表b[]d[];[]s[]e[]#[]B[]D[]S0[]s2[8]11[7]acc2[3]s4[9]33[4]s54[4]r35[3]s7[][]s8[10]66[6]s97[4]r28[4]s10[][]r59[7]r110[5]s8[10]1111[6]r4
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯