永发信息网

判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】

答案:1  悬赏:30  手机版
解决时间 2021-04-13 02:29
  • 提问者网友:欺烟
  • 2021-04-12 05:48
判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
最佳答案
  • 五星知识达人网友:几近狂妄
  • 2021-04-12 06:16

(1) f(x)=loga[x+根号内(x²+1)】,
f(-x)=loga[-x+根号内(x²+1)】=loga1/[x+根号内(x²+1)】=-loga[x+根号内(x²+1)】=-f(x),
所以f(x)是奇函数.
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
分母有理化,并整理得:f(x)={根号内(x²+1)+x}/x=根号内(1+1/x^2)+1
显然f(-x)=f(x),这是个偶函数.


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯