分解因式:(x4+x2-4)(x4+x2+3)+10=______
答案:1 悬赏:50 手机版
解决时间 2021-11-23 09:58
- 提问者网友:锁深秋
- 2021-11-22 12:06
分解因式:(x4+x2-4)(x4+x2+3)+10=______
最佳答案
- 五星知识达人网友:不如潦草
- 2021-11-22 12:28
令x4+x2=y,
∴原式=(y-4)(y+3)+10
=y2-y-2
=(y+1)(y-2)
将x4+x2=y代入,
所以原式=(x4+x2+1)(x4+x2-2)
=(x4+x2+1)(x2+2)(x2-1)
=(x4+x2+1)(x2+2)(x+1)(x-1)
=(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1)
故答案为:(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1).
∴原式=(y-4)(y+3)+10
=y2-y-2
=(y+1)(y-2)
将x4+x2=y代入,
所以原式=(x4+x2+1)(x4+x2-2)
=(x4+x2+1)(x2+2)(x2-1)
=(x4+x2+1)(x2+2)(x+1)(x-1)
=(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1)
故答案为:(x2+x+1)(x2-x+1)((x2+2)(x+1)(x-1).
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯