永发信息网

若点P满足x^2/4+y^2=1(y≥0),求y-2/x-4的最小值( )

答案:1  悬赏:20  手机版
解决时间 2021-08-20 06:41
  • 提问者网友:wodetian
  • 2021-08-19 09:08
若点P满足x^2/4+y^2=1(y≥0),求y-2/x-4的最小值( )
最佳答案
  • 五星知识达人网友:狂恋
  • 2021-08-19 10:24

由题意可知:点P是椭圆x^2/4+y^2=1的上半部分上,
分析题目可知y-2/x-4就是经过点P与点(4,2)的直线的斜率的最小值,
联立y-2=k(x-4)
x^2/4+y^2=1
令△=0
解得k=1/2
∴y-2/x-4的最小值为1/2
再问: 那最后判别式的表达式是什么?为什么我算的k不是0.5?谢谢
再答: 不是我又算错了吧。 我再算一遍。 貌似确实错了。 以下为第二遍过程: 联立后得:(k²+1/4)x²-4k(2k-1)x+(16k²-16k+3)=0 △=16k²(2k-1)²-4(k²+1/4)(16k²-16k+3) =16k²(2k-1)²-(4k²+1)(16k²-16k+3) =16k²(4k²-4k+1)-(4k²+1)(16k²-16k+3) =(4k²+1)(16k²-16k²+16k-3)-64k³ =(4k²+1)(16k-3)-64k³ =-12k²+16k-3=0 ∴12k²-16k+3=0 ∴k=(4±√7)/24 ∴斜率的最小值为(4-√7)/24 【有错的话告诉我,我再算】
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯