求由抛物线y^2=2x与直线x-y=4所围成的图形的面积
答案:3 悬赏:10 手机版
解决时间 2021-03-17 08:25
- 提问者网友:末路
- 2021-03-16 17:39
求由抛物线y^2=2x与直线x-y=4所围成的图形的面积
最佳答案
- 五星知识达人网友:duile
- 2021-03-16 18:02
如图,阴影部分即为所求面积
将函数换成以y为变量,积分比较方便
y^2=2x => x=y^2/2 x-y=4 => x=y+4
将x=y^2/2代入x=y+4解得两曲线交点纵坐标分别为y1=-2,y2=4
∴S=∫(y1,y2)[(y+4)-y^2/2]dy
=(y1,y2)[y^2/2+4y-y^3/6]
=[4^2/2+4*4-4^3/6]-[(-2)^2/2+4*(-2)-(-2)^3/6]
=(8+16-32/3)-(2-8+4/3)
=20
将函数换成以y为变量,积分比较方便
y^2=2x => x=y^2/2 x-y=4 => x=y+4
将x=y^2/2代入x=y+4解得两曲线交点纵坐标分别为y1=-2,y2=4
∴S=∫(y1,y2)[(y+4)-y^2/2]dy
=(y1,y2)[y^2/2+4y-y^3/6]
=[4^2/2+4*4-4^3/6]-[(-2)^2/2+4*(-2)-(-2)^3/6]
=(8+16-32/3)-(2-8+4/3)
=20
全部回答
- 1楼网友:千夜
- 2021-03-16 19:39
思路:直线与抛物线相交于点A(2,-2)、B(8,4),直线与X轴相交于点C(4,0),过点A、B分别作X轴的垂线交X轴与A`、B`,则围成图形的面积为∫√(2x)dx (从0积到8)-S△CBB`+∫√(2x)dx(从0积到2)+S△CAA`。【答案:10】
- 2楼网友:轻熟杀无赦
- 2021-03-16 19:13
解法一:(以y为变量)
所求面积=∫<-2,4>[(y+4)-y²/2]dy
=(y²/2+4y-y³/6)<-2,4>
=(4²/2+4*4-4³/6)-[(-2)²/2+4(-2)-(-2)³/6]
=18;
解法二:(以x为变量)
所求面积=∫<0,2>{√(2x)-[-√(2x)]}dx+∫<2,8>[√(2x)-(x-4)]dx
=2∫<0,2>√(2x)dx+∫<2,8>[√(2x)-x+4]dx
=2[(2√2/3)x^(3/2)]│<0,2>+[(2√2/3)x^(3/2)-x²/2+4x]│<2,8>
=2[(2√2/3)*2^(3/2)]+{[(2√2/3)*8^(3/2)-8²/2+4*8]-[(2√2/3)*2^(3/2)-2²/2+4*2]}
=18。
所求面积=∫<-2,4>[(y+4)-y²/2]dy
=(y²/2+4y-y³/6)<-2,4>
=(4²/2+4*4-4³/6)-[(-2)²/2+4(-2)-(-2)³/6]
=18;
解法二:(以x为变量)
所求面积=∫<0,2>{√(2x)-[-√(2x)]}dx+∫<2,8>[√(2x)-(x-4)]dx
=2∫<0,2>√(2x)dx+∫<2,8>[√(2x)-x+4]dx
=2[(2√2/3)x^(3/2)]│<0,2>+[(2√2/3)x^(3/2)-x²/2+4x]│<2,8>
=2[(2√2/3)*2^(3/2)]+{[(2√2/3)*8^(3/2)-8²/2+4*8]-[(2√2/3)*2^(3/2)-2²/2+4*2]}
=18。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯