永发信息网

设函数f(x)是R上的偶函数,对于任意x∈R都有f(x+6)=f(x)+f(3),且f(2)=3,则f(2006)+f(2007)=______.

答案:2  悬赏:80  手机版
解决时间 2021-04-05 00:20
  • 提问者网友:川水往事
  • 2021-04-04 18:29
设函数f(x)是R上的偶函数,对于任意x∈R都有f(x+6)=f(x)+f(3),且f(2)=3,则f(2006)+f(2007)=______.
最佳答案
  • 五星知识达人网友:拾荒鲤
  • 2021-04-04 18:42
解:由f(x+6)=f(x)+f(3)
令x=-3,则有f(-3+6)=f(-3)+f(3)
即f(3)=f(-3)+f(3)
所以f(-3)=0
由已知f(x)是R上的偶函数
所以f(3)=f(-3)=0
所以f(x+6)=f(x)+f(3)=f(x)
所以T=6
f(2006)+f(2007)=f(2)+f(3)=3
全部回答
  • 1楼网友:蓝房子
  • 2021-04-04 18:53
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯