y=sin2X-X,在[-π/2,π/2]的最大值和最小值怎么求?详细步骤!
答案:1 悬赏:30 手机版
解决时间 2021-04-20 11:01
- 提问者网友:椧運幽默
- 2021-04-19 19:29
y=sin2X-X,在[-π/2,π/2]的最大值和最小值怎么求?详细步骤!
最佳答案
- 五星知识达人网友:鸠书
- 2021-04-19 20:02
函数y=sin2x-x导数f^(x)=2cos2x-1 x属于[-π/2,π/2]2x属于[-π,π]
令f^(x)=2cos2x-1=0 得x=π/12、-π/12
当x属于[-π,-π/12) 导数f^(x)<0 函数y=sin2x-x递减
当x属于(-π/12,π/12] 导数f^(x)>0 函数y=sin2x-x递增
当x属于(π/12,π] 导数f^(x)<0 函数y=sin2x-x递减
所以 函数在x=-π/12 函数有最小值π/12 -1/2 x=π/12函数有最大值π/12 +1/2
令f^(x)=2cos2x-1=0 得x=π/12、-π/12
当x属于[-π,-π/12) 导数f^(x)<0 函数y=sin2x-x递减
当x属于(-π/12,π/12] 导数f^(x)>0 函数y=sin2x-x递增
当x属于(π/12,π] 导数f^(x)<0 函数y=sin2x-x递减
所以 函数在x=-π/12 函数有最小值π/12 -1/2 x=π/12函数有最大值π/12 +1/2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯