证明 0.0999<1/10^2+1/11^2+...+1/1000^2<0.111
答案:1 悬赏:30 手机版
解决时间 2021-02-04 02:55
- 提问者网友:黑米和小志
- 2021-02-03 10:20
证明 0.0999<1/10^2+1/11^2+...+1/1000^2<0.111
最佳答案
- 五星知识达人网友:北城痞子
- 2021-02-03 11:53
[1/(10x10)+1/(11x11)+1/(12x12)+.....+1(1000x1000)]>[1/(10x11)+1/(11x12)+1/(12x13)+.....+1(1000x1001)]
1/(10x11)+1/(11x12)+1/(12x13)+.....+1(1000x1001)
=(1/10)-(1/11)+(1/11)-(1/12)+.......+(1/1000)-(1/1001)
=(1/10)-(1/1001)=0.099
[1/(10x10)+1/(11x11)+1/(12x12)+.....+1(1000x1000)]<[1/(9x10)+1/(10x11)+1/(11x12)+.....+1(999x1000)]
=(1/9)-(1/10)+(1/10)-(1/11)+.......+(1/999)-(1/1000)
=(1/9)-(1/1000)
=991/9000=0.110
0.099<[1/(10x10)+1/(11x11)+1/(12x12)+.....+1(1000x1000)]<0.110
1/(10x11)+1/(11x12)+1/(12x13)+.....+1(1000x1001)
=(1/10)-(1/11)+(1/11)-(1/12)+.......+(1/1000)-(1/1001)
=(1/10)-(1/1001)=0.099
[1/(10x10)+1/(11x11)+1/(12x12)+.....+1(1000x1000)]<[1/(9x10)+1/(10x11)+1/(11x12)+.....+1(999x1000)]
=(1/9)-(1/10)+(1/10)-(1/11)+.......+(1/999)-(1/1000)
=(1/9)-(1/1000)
=991/9000=0.110
0.099<[1/(10x10)+1/(11x11)+1/(12x12)+.....+1(1000x1000)]<0.110
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯