如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠θ的度数50°,则∠BAC的度数是________.
答案:2 悬赏:10 手机版
解决时间 2021-03-25 00:03
- 提问者网友:兔牙战士
- 2021-03-24 00:29
如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠θ的度数50°,则∠BAC的度数是________.
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-03-24 01:54
155°解析分析:根据折叠的性质得到∠E=∠ACB,∠BAE=∠BAC,∠ACB=∠ACD,则∠ACD=∠E,利用三角形的内角和相等得到∠ACD+∠CAE=∠E+∠θ,则∠EAC=∠θ=50°,所以∠BAE+∠BAC=360°-50°=310°,即可得到∠BAC的度数.解答:∵△ABE是△ABC沿着AB边翻折180°形成的,
∴∠E=∠ACB,∠BAE=∠BAC,
又∵△ACD是△ABC分别沿着AC边翻折180°形成的,
∴∠ACB=∠ACD,
∴∠ACD=∠E,
而∠ACD+∠CAE=∠E+∠θ,
∴∠EAC=∠θ=50°,
∴∠BAE+∠BAC=360°-50°=310°,
∴∠BAC=155°.
故
∴∠E=∠ACB,∠BAE=∠BAC,
又∵△ACD是△ABC分别沿着AC边翻折180°形成的,
∴∠ACB=∠ACD,
∴∠ACD=∠E,
而∠ACD+∠CAE=∠E+∠θ,
∴∠EAC=∠θ=50°,
∴∠BAE+∠BAC=360°-50°=310°,
∴∠BAC=155°.
故
全部回答
- 1楼网友:撞了怀
- 2021-03-24 03:05
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯