永发信息网

如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从

答案:1  悬赏:0  手机版
解决时间 2021-05-10 08:11
  • 提问者网友:泪痣哥哥
  • 2021-05-10 02:30

如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).

1)求线段AB的长;当t为何值时,MN∥OC?

(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?

(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由.

最佳答案
  • 五星知识达人网友:雪起风沙痕
  • 2021-05-10 02:56
依题意,图像在第一象限内且四边行OABC是直角梯形,过B点作X轴的垂线交X轴于D点,过N点作X轴的垂线交X轴于E点,设M点的坐标为(t,0),S直角梯形OABC求得为18。
(1)点A坐标为(6,0)点B坐标为(3,4),所以AB=5,要使MN//OC ,则MN//BD(M点与E点重合),即△ANM∽△ABD,AN=t,AM=6-t,AD=3,有AM:AN=AD:AB ,所以(6-t):t=3:5,解得t=15/4(秒);
(2)由△ANE∽△ABD,求得NE=4t/5,S△CNM=S△直角梯形OABC-(S△ANM+S△OMB+S△BCN)=18-0.5*AM*NE-0.5*OM*OB-0.5*BC*(4-NE),整理得S△CNM=2/5(t-4)^2+28/5.
∴当t=4时,S有最小值,且S最小=28/5
(3)设存在点P使MN⊥AC于点P
由(2)得AE=3t/5 NE=4t/5
∴ME=AM-AE=6-t-3t/5=6-8t/5,
∵∠MPA=90°,
∴∠PMA+∠PAM=90°,
∵∠PAM+∠OCA=90°,
∴∠PMA=∠OCA,
∴△NME∽△ACO
∴NE:OA=ME:OC
∴4t/5:6=6-8t/5:4
解得t=45/16
∴存在这样的t,且t=45/16
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯