永发信息网

已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对?x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.

答案:2  悬赏:30  手机版
解决时间 2021-01-03 19:05
  • 提问者网友:喧嚣尘世
  • 2021-01-02 22:18
已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对?x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.
最佳答案
  • 五星知识达人网友:山有枢
  • 2021-01-02 23:39
解:∵y=ax在R上单调递增,∴a>1;
又不等式ax2-ax+1>0对?x∈R恒成立,
∴△<0,即a2-4a<0,∴0<a<4,
∴q:0<a<4.
而命题p且q为假,p或q为真,那么p、q中有且只有一个为真,一个为假.
①若p真,q假,则a≥4;
②若p假,q真,则0<a≤1.
所以a的取值范围为(0,1]∪[4,+∞).解析分析:先解命题,再研究命题的关系,函数y=ax在R上单调递增,由指数函数的单调性解决;等式ax2-ax+1>0对?x∈R恒成立,用函数思想,又因为是对全体实数成立,可用判断式法解决,若p且q为假,p或q为真,两者是一真一假,计算可得
全部回答
  • 1楼网友:长青诗
  • 2021-01-03 00:41
对的,就是这个意思
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯