多边形的边数与能分割的三角形个数是什么关系?
答案:4 悬赏:20 手机版
解决时间 2021-03-08 12:12
- 提问者网友:爱了却不能说
- 2021-03-07 11:49
多边形的边数与能分割的三角形个数是什么关系?
最佳答案
- 五星知识达人网友:轮獄道
- 2021-03-07 13:00
关系:
n边形内部找一点和各个顶点连接可以分成n个三角形;从一个顶点做左右的对角线可以分成(n-2)个三角形;从边上异于顶点的任意一点连所有定点可以做出(n-1)个三角形。
扩展资料:
多边形定理
内角
1、n边形的内角和等于(n-2)x180;
注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。
2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:
n边形的边=(内角和÷180°)+2;
过n边形一个顶点有(n-3)条对角线;
n边形共有n×(n-3)÷2=对角线;
3、 n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
推论:
(1)任意凸形多边形的外角和都等于360°;
(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);
(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】
反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。
外角
多边形外角和定理:
1、n边形外角和等于n·180°-(n-2)·180°=360°
2、多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
3、多边形的内角的一边与另一边的反向延长线所组成的角,叫这个多边形的外角,(这样的产生外角有两个,由于他们相等,但我们通常只取其中一个)。
参考资料来源:搜狗百科-多边形
n边形内部找一点和各个顶点连接可以分成n个三角形;从一个顶点做左右的对角线可以分成(n-2)个三角形;从边上异于顶点的任意一点连所有定点可以做出(n-1)个三角形。
扩展资料:
多边形定理
内角
1、n边形的内角和等于(n-2)x180;
注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。
2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。可逆用:
n边形的边=(内角和÷180°)+2;
过n边形一个顶点有(n-3)条对角线;
n边形共有n×(n-3)÷2=对角线;
3、 n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
推论:
(1)任意凸形多边形的外角和都等于360°;
(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);
(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】
反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。
外角
多边形外角和定理:
1、n边形外角和等于n·180°-(n-2)·180°=360°
2、多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
3、多边形的内角的一边与另一边的反向延长线所组成的角,叫这个多边形的外角,(这样的产生外角有两个,由于他们相等,但我们通常只取其中一个)。
参考资料来源:搜狗百科-多边形
全部回答
- 1楼网友:想偏头吻你
- 2021-03-07 16:57
n边形,能分割n-2个三角形。
- 2楼网友:西岸风
- 2021-03-07 15:41
n边形内部找一点和各个顶点连接可以分成n个三角形;
从一个顶点做左右的对角线可以分成(n-2)个三角形;
从边上异于顶点的任意一点连所有定点可以做出(n-1)个三角形
- 3楼网友:行雁书
- 2021-03-07 14:31
将多边形的各个顶点连接后所得到的最多三角形的个数=多边形的边数-2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯