设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;
②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若∠ABC=90°,H是AC的中点,则PA=PB=PC;
④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是______.
设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
答案:1 悬赏:0 手机版
解决时间 2021-08-17 22:38
- 提问者网友:活着好累
- 2021-08-17 15:42
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-08-17 16:41
①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA,PB,PC两两互相垂直,容易推出AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
③若∠ABC=90°,H是AC的中点,容易推出△PHA≌△PHB≌△PHC,则PA=PB=PC;正确.
设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;
②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若∠ABC=90°,H是AC的中点,则PA=PB=PC;
④若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.
故答案为:①②③④
再问: 可不可以画下图图,谢谢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯