己知数列{an}的前n项和Sn=3n^2-2n,求证:数列{an}成等差数列,并求其首项、公差、通项公式.
己知数列{an}的前n项和Sn=3n^2-2n,求证:数列{an}成等差数列,并求其首项、公差、通项公式.
答案:1 悬赏:20 手机版
解决时间 2021-03-22 04:24
- 提问者网友:沦陷
- 2021-03-21 17:10
最佳答案
- 五星知识达人网友:平生事
- 2021-03-21 18:33
an=sn-s(n-1)
=3n²-2n-3(n-1)²+2(n-1)
=3n²-2n-3n²+6n-3+2n-2
=6n-5
同理a(n+1)=s(n+1)-sn=6n+1
a(n+1)-an=6
所以{an}为等差数列,公差为6
通项公式为an=6n-5
首项a1=6-5=1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯