解答题a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=
答案:2 悬赏:60 手机版
解决时间 2021-04-05 06:42
- 提问者网友:山高云阔
- 2021-04-04 12:43
解答题
a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.
最佳答案
- 五星知识达人网友:青灯有味
- 2021-04-04 13:37
假设两个方程都没有两个不等的实数根,则Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ1+Δ2=1-4b+a2-4c≤0.∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.所以假设不成立,原命题正确,即两个方程中至少有一个方程有两个不相等的实数根解析证明 假设两个方程都没有两个不等的实数根,则Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ1+Δ2=1-4b+a2-4c≤0.∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.所以假设不成立,原命题正确,即两个方程中至少有一个方程有两个不相等的实数根.
全部回答
- 1楼网友:轮獄道
- 2021-04-04 14:32
感谢回答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯