永发信息网

下面给出四个命题:①若平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;③过空

答案:2  悬赏:20  手机版
解决时间 2021-12-30 18:32
  • 提问者网友:不爱我么
  • 2021-12-29 23:03
下面给出四个命题:
①若平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;
②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;
③过空间任一点,可以做两条直线和已知平面α垂直;
④平面α∥平面β,P∈α,PQ∥β,则PQ?α;
其中正确的命题是A.①②B.①②③C.①②④D.①④
最佳答案
  • 五星知识达人网友:孤独入客枕
  • 2021-12-29 23:34
D解析分析:①根据面面平行的性质定理可得AC∥BD,所以AB=CD;②根据空间中线与线的位置关系可得:a,c可能是异面直线也可能是共面直线;③由线面垂直的定义可得:过空间任一点,有且只有一条直线与已知平面垂直;④根据空间中线面的位置关系与直线的有关定理可得PQ?α.解答:①若平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,根据面面平行的性质定理可得AC∥BD,所以AB=CD;所以①正确.②a,b是异面直线,b,c是异面直线,则根据空间中线与线的位置关系可得:a,c可能是异面直线也可能是共面直线;所以②错误.③由线面垂直的定义可得:过空间任一点,有且只有一条直线与已知平面垂直;所以③错误.④平面α∥平面β,P∈α,PQ∥β,则根据空间中线面的位置关系与直线的有关定理可得PQ?α;所以④正确.故选D.点评:解决此类问题的关键是熟练掌握空间中直线与平面位置关系,以及有关的判断定理与性质定理,此类题目一般以选择题或填空题的形式出现.
全部回答
  • 1楼网友:拾荒鲤
  • 2021-12-29 23:57
这个答案应该是对的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯