解答题
已知函数f(x)=2x3+3x2-12x+3
(1)求f(x)的单调区间;
(2)求f(x)在[-3,3]上的最大值和最小值.
解答题已知函数f(x)=2x3+3x2-12x+3(1)求f(x)的单调区间;(2)求
答案:2 悬赏:0 手机版
解决时间 2021-03-21 23:51
- 提问者网友:趣果有间
- 2021-03-21 21:02
最佳答案
- 五星知识达人网友:七十二街
- 2021-03-21 22:35
解:(1)求导函数,可得f′(x)=6(x+2)(x-1)
由f′(x)>0,可得x<-2或x>1;由f′(x)<0,可得-2<x<1
∴f(x)的单调递增区间为(-∞,-2),(1,+∞),递减区间为(-2,1);
(2)令f′(x)=0,可得x=-2或x=1
∵f(-2)=23,f(1)=-4,f(-3)=12,f(3)=48,
∴f(x)在[-3,3]上的最大值为48,最小值为-4.解析分析:(1)求导函数,由导数的正负,可得f(x)的单调区间;(2)利用函数的最值在极值点及端点处取得,即可求得结论.点评:本题考查导数知识的运用,考查函数的单调性与最值,考查学生的计算能力,属于中档题.
由f′(x)>0,可得x<-2或x>1;由f′(x)<0,可得-2<x<1
∴f(x)的单调递增区间为(-∞,-2),(1,+∞),递减区间为(-2,1);
(2)令f′(x)=0,可得x=-2或x=1
∵f(-2)=23,f(1)=-4,f(-3)=12,f(3)=48,
∴f(x)在[-3,3]上的最大值为48,最小值为-4.解析分析:(1)求导函数,由导数的正负,可得f(x)的单调区间;(2)利用函数的最值在极值点及端点处取得,即可求得结论.点评:本题考查导数知识的运用,考查函数的单调性与最值,考查学生的计算能力,属于中档题.
全部回答
- 1楼网友:千夜
- 2021-03-21 23:06
和我的回答一样,看来我也对了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯