如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,F为CE中点,G为CD上一点,连接DF,EG,AG,且∠1
=∠2.
(1)若CF=2,AE=3,求BE长;
(2)求证:∠CEG=1/2∠AGE.
如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,F为CE中点,G为CD上一点,连接DF,EG,AG,且
答案:1 悬赏:0 手机版
解决时间 2021-07-18 22:36
- 提问者网友:眉目添风霜
- 2021-07-18 12:08
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-07-18 12:54
∵CE=CD,点F为CE的中点,CF=2,
∴DC=CE=2CF=4,
∵四边形ABCD是平行四边形,
∴AB=CD=4,
∵AE⊥BC,
∴∠AEB=90°,
在Rt△ABE中,由勾股定理得:BE=根号4²-3²=根号7
(2)
过G作GM⊥AE于M,
∵AE⊥BE,
∴GM∥BC∥AD,
∵在△DCF和△ECG中,
∠1=∠2
∠C=∠C
CD=CE
∴△DCF≌△ECG(AAS),
∴CG=CF,
∵CE=CD,CE=2CF,
∴CD=2CG
即G为CD中点,
∵AD∥GM∥BC,
∴M为AE中点,
∵GM⊥AE,
∴AM=EM,
∴∠AGE=2∠MGE,
∵GM∥BC,
∴∠EGM=∠CEG,
∴∠CEG=1/2∠AGE.
名师点评:
羽汐颜5527
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯