请问一下时域卷积和频域卷积有什么区别吗?在实际应用中怎么体现出来?
答案:4 悬赏:50 手机版
解决时间 2021-03-14 11:33
- 提问者网友:夢醒日落
- 2021-03-13 23:05
请问一下时域卷积和频域卷积有什么区别吗?在实际应用中怎么体现出来?
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-03-14 00:15
时域卷积
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。
如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
时域卷积应用
卷积在工程和数学上都有很多应用:统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。
频域卷积:卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。应用
卷积定理的应用在很多涉及积分变换、积分方程的文章中都有所体现。常见的一些重要的积分变换,例如:Mellin变换、Laplace变换、Fourier变换等都具有所谓的卷积性质(Convolution Property)。这里要注意的是,针对不同的积分变换,卷积性质的形式不是完全相同的,只要一些基本的结构得到保留就可以了。
在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。
如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
时域卷积应用
卷积在工程和数学上都有很多应用:统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。
频域卷积:卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。应用
卷积定理的应用在很多涉及积分变换、积分方程的文章中都有所体现。常见的一些重要的积分变换,例如:Mellin变换、Laplace变换、Fourier变换等都具有所谓的卷积性质(Convolution Property)。这里要注意的是,针对不同的积分变换,卷积性质的形式不是完全相同的,只要一些基本的结构得到保留就可以了。
全部回答
- 1楼网友:duile
- 2021-03-14 03:14
卷积本身并没有什么区别,只需要弄清楚时域和频域的区别与联系。
- 2楼网友:山河有幸埋战骨
- 2021-03-14 03:01
时域的卷积等于频域的相乘,频域的卷积等于时域的相乘。
他们只是2个不同的算法而已,没什么可比性。举个例子:
时域的卷积:
- 3楼网友:白昼之月
- 2021-03-14 01:44
时域卷积相当于频域相乘。。
频域卷积相当于时域相乘。。
在实际应用中。。
说个小故事。。
你应该就能明白了。。
张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。
"很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!"
这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"
于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。
上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"
张三照办了,"然后呢?"
上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。"
张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?"
上帝说:"叫卷积!"
频域卷积相当于时域相乘。。
在实际应用中。。
说个小故事。。
你应该就能明白了。。
张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。
然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。
"很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!"
这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"
于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。
上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"
张三照办了,"然后呢?"
上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。"
张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?"
上帝说:"叫卷积!"
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯