给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列
答案:2 悬赏:40 手机版
解决时间 2021-04-14 20:25
- 提问者网友:寂寞梧桐
- 2021-04-14 03:58
给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”.例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,数列{an}的最后一项am=________.
最佳答案
- 五星知识达人网友:西风乍起
- 2021-04-14 04:42
1解析分析:利用反证法证明a4=am=1.假设如果a1,a2,a3,a4与am-3,am-2,am-1,am不能按次序对应相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3与am-3,am-2,am-1,am按次序对应相等.考虑ai-1,aj-1和am-4,其中必有两个相同,这就导致数列{an}中有两个连续的五项恰按次序对应相等,从而数列{an}是“5阶可重复数列”,这和题设中数列{an}不是“5阶可重复数列”矛盾得证.解答:由于数列{an}在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{an}的末项am后再添加一项0或1,则存在i≠j,使得ai,ai+1,ai+2,ai+3,ai+4与am-3,am-2,am-1,am,0按次序对应相等,或aj,aj+1,aj+2,aj+3,aj+4与am-3,am-2,am-1,am,1按次序对应相等,如果a1,a2,a3,a4与am-3,am-2,am-1,am不能按次序对应相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3与am-3,am-2,am-1,am按次序对应相等.此时考虑ai-1,aj-1和am-4,其中必有两个相同,这就导致数列{an}中有两个连续的五项恰按次序对应相等,从而数列{an}是“5阶可重复数列”,这和题设中数列{an}不是“5阶可重复数列”矛盾;所以a1,a2,a3,a4与am-3,am-2,am-1,am按次序对应相等,从而am=a4=1. 故
全部回答
- 1楼网友:拜訪者
- 2021-04-14 05:43
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯