P在e=5/4的双曲线X^2/a^2-Y^2/b^2=1上,F1F2是其焦点,且向量PF1*PF2=0若三角形F1PF2的面积为9求A+B 过程
P在e=5/4的双曲线X^2/a^2-Y^2/b^2=1上,F1F2是其焦点,且向量PF1*PF2=0若三角形F1PF2
答案:1 悬赏:20 手机版
解决时间 2021-08-21 15:24
- 提问者网友:最爱你的唇
- 2021-08-21 04:59
最佳答案
- 五星知识达人网友:归鹤鸣
- 2021-08-21 05:19
e^2=(a^2+b^2)/a^2=25/16,
∴b^2/a^2=9/16,
∴b/a=3/4.①
设|PF1|=5x0/4+a,|PF2|=5x0/4-a(焦半径公式),其中x0是点P的横坐标.
因向量PF1*PF2=0,故三角形F1PF2的面积=(1/2)(25x0^2/16-a^2)=9,②
由勾股定理,(5x0/4+a)^2+(5x0/4-a)^2=(2c)^2=4(a^2+b^2)=25a^2/4(由①).
∴25x0^2/8=17a^2/4,
∴x0^2=34a^2/25.代入②得
9a^2/8=18,a^2=16,a=4.
代入①,b=3.
∴a+b=7.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯