设limXn(n→∞)=A(有限或∞),证明:lim1/n(X1+X2+...+Xn)(n→∞)=A
急求,3Q
设limXn(n→∞)=A(有限或∞),证明:lim1/n(X1+X2+...+Xn)(n→∞)=A
答案:1 悬赏:0 手机版
解决时间 2021-04-24 20:43
- 提问者网友:爱了却不能说
- 2021-04-24 06:24
最佳答案
- 五星知识达人网友:玩世
- 2021-04-24 07:19
lim(n->∞) an =a ,求证: lim(n->∞) (a1+a2+..+an)/n=a
证明:
① 对任意 ε>0 ,
∵ lim(n->∞) an =a
对 ε/2 >0 ,存在 N1,当n>N1时, |an-a| max{ M , N1} 时:
|(a1+a2+..+an)/n - a|
≤ (|a1-a|+|a2-a|+...+|aN1-a|)/n +(|a(N1+1)-a|+...+|an-a|)/n
≤ ε/2 +(n-N1)*ε/2/n ≤ ε/2+ε/2 = ε
② 故存在 N = max{ [M] , N1} ∈Z+
③ 当 n>N 时,
④ 恒有: |(a1+a2+..+an)/n - a| < ε 成立.
∴ lim(n->∞) (a1+a2+..+an)/n=a
{本题最简洁的方法是直接套 O'Stoltz 定理即可}
反之不成立, 如反例 :
an = (-1)^n
lim(n->∞) (a1+a2+..+an)/n = 0 ,但:
an = (-1)^n 发散.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯